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Is it possible that these expansions are identical except for the sign
of the odd powers of &7
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Continuous Spectrum and Characteristic
Modes of the Slot Line in Free Space

Marat Davidovitz

Abstract—The continuous spectrum of the slot in an infinite ground
plane is expressed in terms of the Mathien functions. The so-called
characteristic values and field modes of the slot are stated explicitly.

I. CONTINUOUS SPECTRUM REPRESENTATION

In a recent paper [1] a general eigenspectrum construction method
for open waveguides was presented. As an illustration, the case of
the slotted screen was considered. Extensive analysis of the same
problem was also undertaken in [2] and subsequent publications by
the same authors. The purpose of this note is to state in closed form
the eigenmodes, the charactenistic slot-field modes and values for
the aforementioned geometry. These may be used to venify numer-
1cal solutions, as basis functions for more complex, nonseparable
geometries, or to investigate slot-line discontinuities.

Consider an infinite slot of width a in a perfectly conducting, zero-
thickness screen. Let the center line of the slot define the --axis, and
the .x-axis lie in the plane of the screen. The fields in this structure can
be represented in terms of a complete, orthonormal set of :-gurded
eigenfunctions, each satisfying appropriate boundary conditions on
the screen. The transverse-to-: cross section of the structure 1s un-
bounded and homogeneously filled; the eigenspectrum is continuous
and allows decomposition into TE. and TM. components [3]

For a complete description of the notation used here for the
elliptic cylindrical coordinates and the Mathieu functions the reader
is referred to [4].

A. TM. Eigenmodes

The transverse electric field of a TM. eigenmode can be rep-
resented as the gradient of a scalar function &,,(h.cosh i cost),
where h = ]Ek’”* 0 < k¢ £ x is the continuous spectral variable.
m is the discrete index associated with the angular solutjons and
1.t denote, respectively, the radial and angular elliptic coordinates.
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Following the approach employed in [5], [6] for the case of a ndged
elliptical wavegude, eigenmodes with even or odd symmetry with
respect to the plane of the screen are distinguished.

The even solutions are given by

D), (hocoshp,cos @) = Poy, (I, cosh )So,,(h.cost)
Pop, (k. coshp) = Nob, (h.1).J o, (h.cosh i)
— Jol, (h, 1)N o, (h.cosh u)

and the odd solutions by

By, (h.cosh . cos8) = Qo (hocosh ) So,, (I cosd)
Jo,, (I cosh )
m ]., ‘71 R
(205, (I, cosh ) Tor (h 1)
where So,, (h.cosf) is the m-th odd angular Mathieu function,
Jo, (h.coshiy) and No., (h.coshp) are, respectively, the radial
Mathieu functions of the first and second kind associated with the
odd angular solution, and prime denotes differentiation with respect
to . The boundary conditions on the screen are satisfied by virtue of
the fact that So,, (h.cos8) = 0 at # = 0, 7. Among other properties
of the two solutions are the following facts

Po,(h,1)=1 Po:,,(hql):()
Qo (h. 1) =10 Q(J/m(h.l)_:l
W(Po,,(h.coshp), Qomth.coshp)) =1

where YV denotes the Wronskian.

B. TE. Eigenmodes

The transverse magnetic field of a TE. eigenmode can be rep-
resented as the gradient of a scalar function W, (h,cosh i, cos @),
where the previously introduced notation 1s applicable.

The even solutions are given by

TS, (h,cosh g, cos ) = Pe,, (h,coshpr)Se . (h.cos )
Pe,, (h,coshp) = Je, (", 1)Ney, (hocosh )
~ Ne,, (h.1)Je,,(h, cosh )

and the odd solutions by

U (h.coshjicosd) = Qe (h.cosh u)Se,, (h.cosf)
Je, (hycosh)

Qcp(h.coshp) = ————— 2

denl ) Jem(h1)
where Se,, (h,cos#) is the mth even angular Mathieu function,
Jen{lhocoshp) and Nep, (h.ocoshp) are, respectively, the radial
Mathieu functions of the first and second kind associated with the
even angular solution, and prime denotes differentiation with respect
to y1. The boundary conditions on the screen are satisfied because
Qonlheo2f) = (até = 0,7. Additional properties of the two
solutions include

Pe,(h.ly=0 P (h,1)=1
Qemth,1)=1 Qe (h.1)=0
W(P¢,, (h,coshpu). Qe,,(h.coshpu)) = 1.
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C. Normalization Constants

In order to expand the fields of sources in the presence of the
slotted screen, the eigenmodes must be normalized. This can be
accomplished in a number of ways [3]. Only the final results are
stated.

Let the transverse electric field of a TM. mode corresponding to
the mth radial solution and spectral number k¢ be denoted by

ETy(m, h) = V877 (h, cosh g, cos t)

and the electric field of a TE. mode corresponding to the mth radial
solution and spectral number k; by

ETp(m.h) =2 x Vi ¥;,°(h,cosh pt, cos §).

Upon defining the inner product over the transverse cross-section S

as follows
(A,B)://A-B ds
s

it can be shown that the following equations are true

(Em(m.h1) Bty (n.ha))
= Gk M (Ao hs. 1)” + Nop (k1 1)’]
X 0(ke1 — kt2)0mn
(Bfmim. h1). Efy(n. ha))

= Tl ME (ki) [Jom (k1. 1) 26(ker — Ee2)bumn

2
<E'EI‘E(rnv hl)ﬂE'fI‘E(n“ h2)>
= gkthfn(hl)[Jem(hl.l)z + Nem(hi.1)?]

X é(ktl - kTZ)émn
(Bfr(m, h1), BYg(n. h2))

= %kﬂzu;(hl)[gfem(hh1)]’26(ku — ki2)6mn
where 6(-) is the delta function, 6,,, is the Kronecker symbol, and
normalization constants M,.° are defined in [4].

D. Characteristic Modes for the Slot

The characteristic slot-field modes defined in [2] can be shown
to correspond to the tangential field distributions of the eigenmode
solutions stated above, evaluated at p© = 0. For example, the
characteristic TE . aperture modes for a given value of %, are obtained
as

Sen h,VQJ:/u) o

( a

where the substitution %a cos ¥ = & was made. Numerical evaluation
of Se,,(h.2x/a) can be carried out using a number of software
packages, e.g., [7].

The characteristic values, denoted by b, (k) in [2] (\m(k¢) in
[1]) can be explicitely written as follows

_ New(h,1)
buslhe) = Jem(h, 1)

Efg(m.h.l,z) =% <u<

N R

The approximate b, (k) values derived in [2] represent the first terms
in the series expansion of the preceding equation for small values of
h.
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Electrostatic Potential Through a Circular
Aperture in a Thick Conducting Plane

Jung H. Lee and Hyo J. Eom

Abstract—The electrostatic potential through a circular aperture in a
thick conducting plane is examined. The Hankel transform is applied to
express the scattered potential in the spectral domain and the bound-
ary conditions are enforced to obtain simultaneous equations for the
transmitted potential inside the thick conducting plane. The simultaneous
equations are solved to represent the transmitted and scattered potentials
in series forms. Numerical computations are performed to illustrate the
behavior of polarizability in terms of the aperture size. The numerical
comparisons to other available data show excellent agreement. The
presented series solution is fast convergent so that it is very efficient for
numerical computation.

I. INTRODUCTION

Electrostatic potential through a circular aperture in a thin conduct-
ing plane has been of considerable interest in the area of microwaves
[11-[3]. The potential penetration through a circular aperture in a thick
conducting plane has been studied with the variational technique [4].
Although the solution in [4] fairly well agrees with the measurement
data, it is also of interest to obtain another rigorous exact solution.
The motivation of the present study is to develop such a solution
by using the Hankel transform and the mode-matching used in [S].
The solution presented in this paper is in simple convergent series
so that it iS not only exact but also computationally very efficient.
The organization of the paper is as follows: In the next section. we
represent the scattered potential in the spectral domain and perform
the numerical calculations. A brief summary is given in Conclusion.

II. POTENTIAL REPRESENTATIONS AND
BOUNDARY CONDITIONS

In region (I) (= > 0), an incident potential ®* impinges on a
circular aperture (radius: a, depth: 4) in a thick conducting plane at
zero potential (see Fig. 1). Regions (II) (—d < =z < 0.r < a) and
) (= < —d) denote the circular aperture and the lossless half-
space, respectively. In region (I) the total potential consists of the
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